Ne==

N=

0=

0=

L=

N=

$ = Monads and Comonads in Intensional Semantics
< Stephen Brookes Kathryn Van Stone

April 1993
CMU-CS-93-140

Abstract

Kleisli categories over monads have been used in denotational semantics to describe functional
languages using various notions of computations as values. Kleisli categories over comonads
have also been used to describe intensional semantics rather than extensional. This paper explores
the possibilities of combining monads and comonads to obtain an intensional semantics using
computations as values. We give three alternative ways to combine the two and explore which
apply to known monads and comonads of interest. We will also look at various intensional

semantics for an example programming language that uses monads for computations and compare
them to the original extensional semantics.

93-15189
LT

This research was supported in part by National Science Foundation grant CCR-9006064.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of DARPA or the U.S. government.

Yo -5

—

DTIC GUALITY 1iverd8CIED 8

Keywords: theory, denotational semantics, applicative languages, algebraic approaches to
semantics

1. Introduction

Traditionally most denotational semantic interpretations of a functional programming language interpret a
program as a function from environments to values. Since these semantics focus exclusively on input-output,
or extensional behavior, they cannot easily be used to examine intensional properties of programs, such as
order of evaluation or complexity. Also, since they typically use simple values, it is difficult to extend
them to reason about programming languages with non-functional elements such as nondeterminism, error
handling, and assignments.

When adding such features to a language, originally the denotational semantics was changed on a
case-by-case basis, by adding new “values” to represent invalid results or by changing the structure of the
values, such as using sets of values for non-deterministic results. Moggi in [14] showed that many of these
techniques can be described uniformly using an algebraic structure in category theory called a monad. With
a monad, one can develop a formal semantics using category theory for a variety of functional languages
that also contain many non-functional elements.

There has been some work examining intensional properties {or functional languages. Berry and Curien
[5] developed a semantics using the cartesian closed category of concrete data structures and sequentiai
algorithms, which include information on the order of evaluation as well as the final value. Brookes and
Geva [6] looked at expanding Berry and Curien’s results to parallel computation as well as sequential, and
developed general notion of intensional semantics using comonads.

This paper explores the possibilities of combining both methods: using comonads to examine the
intensional properties of programs whose extensional properties are modeled by means of a monad. Section 2
defines and gives notation for many of the concepts contained in this paper. It is assumed that the reader has a
general knowledge of category theory and domains. Sections 3 and 4 define monads and comonads and give
examples that have been useful for examining programs. The monads and comonads are typically defined
in as general a fashion as possible, with examples given in specific categories, usually Cont, the category
of Scott domains and continuous functions. Section 5 describes the formation of the Kleisli categories
from comonads or monads. Sections 6 and 7 describe ways to combine comonads and monads (see [4])
and examines how they work with the examples given earlier. The last section then looks at a simple
programming language from [14] and at various semantics using comonads and monads together.

2. Preliminary definitions and notational conventions

2.1. Category theory

There are many books containing the basic categorical concepts used in this paper. The technical report [15]
is a good introduction, and [3] is aimed for computer scientists.

A category has binary products if for each pair of objects A and B there is an object A x B with projection
morphisms 7; : A x B — A and 7, : A x B — B such that for all morphismsf : C — Aand g : C — B,
there is a unique morphism (f , g) from C to A x B satisfying 7y o (f.g) =f and 720 {f.g) = g. Forall
morphismsf :A — Candg: B — D,wedefincf x g:AxB—CxDtobe (f orj.gom).

Similarly a category has binary coproducts if for every pair of objects A and B, there is an objectA + B
and a pair of injection morphisms¢; : A — A+Band ¢y : B — A+ B, such that for all morphismsf : A — C

and g : B — C, there is a unique morphism [f , g] from A + B to C satisfying [,g]o¢; =f and [f.glots = g.
For all morphismsf :A — Candg: B — D, wedefinef +g:A+B— C+Dtobe[t;of .120g]

An object 1 of a category is ferminal if for every object A, there exists a unique morphism, denoted !,
fromAto 1.

A category is cartesian closed if it has binary products, a terminal object, and if for each pair of objects
A and B there is an exponentiation object [A — B] and a morphism app, z : [A — B} x A — C such
that for all morphisms f : C x A — B, there is a unique morphism curry(f) : C — [A — B] satisfying
f =app, g o (curry(f) x idy). Here, as usual, id4 denotes the identity morphism for A. Given a morphism
g: C — [A — B] we define uncurry(g) : C x A — Btobe app, g o (g x ids).

A cartesian closed category is ser-like if its objects are sets, its morphisms are functions, its products are
the usual cartesian products of sets, exponentiation objects {4 — B] are subsets of the sct of functions fiom
A to B, and application is the standard function application.

2.2. Partial orders

The definitions for domains and cpo’s in this section come primarily from [10]; the discussion on Plotkin
orders it taken out of [9].

A poset is a set D with a partial order <?, i.e. a binary relation that is reflexive, transitive, and anti-
symmetric. A subset X of a poset is directed if every finite subset of X has an upper bound in X. A partial
order (D, <?) is directed complete if for every directed set X C D, the least upper bound of X, denoted LIX,
exists in D. A partial order is pointed if it has a least element, usually denoted L. A cpo is a pointed directed
complete partial order.

A subset X of a poset is consistent or bounded if it has an upper bound. A partial order is bounded-
complete if every consistent set X has a least upper bound. In a bounded-complete poset, every pair of
elements x, y with a lower bound has a greatest lower bound, written as x 1 y.

An element k in a cpo D is compact (also called finite or isolated) if for every directed set X such that
k <P UX, k is less than or equal to some element in X. The set of compact elements of D is written as
K(D). A cpo D is algebraic if for every x € D, the set {k € K(D) | k <P x} is directed and its least upper
bound is x. A cpo D is w-algebraic [9] if it is algebraic and the set K(D) is countable. A Scott domain is a
bounded-complete, w-algebraic cpo. In this paper we will often use domain for Scott domain.

A bc-domain is an algebraic bounded-complete cpo. A bec-domain is distributive if for all consistent
pairs of elements y and z and all elements x we have that x M (y U z) = (x N y) U (x N 2). An algebraic cpo
has property I if for each element x there are only finitely many compact elements below it. A dI-domain is
a distributive bc-domain that has property I.

A subset N of a poset A is normal if for every x € A, the set NN {y € A | y <# x} is directed. A poset
A is a Plotkin order if for every finite subset X of A, there is a finite normal subset Nof A with X T N. A
bifinite domain is an w-algebraic cpo D such that K(D) is a PlotKin order.

A function f is monotone if f (x) < f(y) whenever x < y. A function is continuous if it is monotone and
preserves least upper bounds of directed sets. A function is strict if it maps least elements to least elements.
A continuous functionf : A — Bisstableif forall b < f (a)theset {@’ < a| b < f(a’)} has a least element,
represented as M(f,a,b). Given two functions f; and f, from A to B, we define the pointwise ordering,

2

‘

<A=Bsuchthatf <48 frif forall x € A, f1(x) <Z fa(x). We also define the stable ordering, <#—5 such
thatf{ <2—B f,iff| <*~B frand forall b < f(a), M(f1,a,b) = M(f>,a.b).

Giventwo posets D| and D,, their separated sum Dy+D- is adomain consistingof theset {(1.x) | x; € Dy }U
{{2,x2) | x2 € D2} U {L} with the ordering <2*02 defined by (i,x) <?'*7: (i.x') whenever x <? ¥
(i=1or2) andforall y € Dy + Dy, L <P*P2 y The coalesced sum Dy + D> of Dy and D, is
(Dy - {1p, N+ (D2— {Lp,})

2.3. Specific categories

The categories used for the examples in this paper will generally be drawn from the following list:

Set: The category of sets and functions.
Cont: The category of Scott domains and continuous functions.
Conts: The category of Scott domains and strict continuous functions.

Bif: The category of bifinite domains and continuous functions. The only interest in this category is that
bifinite domains are closed under the Plotkin power domain (see section 3.5), but Scott domains are
not [91].

dI: The category of dI-domains and stable functions, stably ordered.
All the categories listed above are set-like, except for C~ntg which is not cartesian closed (since currying

does not preserve strictness). Virtually all of the examples that use Cont can be applied to any cartesian
closed category of cpo’s and continuous functions, and most can be applied to any set-like category.

3. Monads

Definition 1 A monad on a category C, (T, n, 1) is a functor, T : C — C, with two natural transformations,
n: 1> Tand p: T? 2 T, satisfying the following conditions for all objects A of C:

® pa 0 puta = pa o Ta
® (a0 Ta = pao Ta = idry
An alteative form is a Kleisli triple, (T,n,), where T is a function from objects to objects, for each

object A, 774 is a morphism from A to TA, and for all morphisms f : A — TB, f " is a morphism from TA to
TB, all satisfying the three conditions below:

e ffom=f
o 7y =idry

° (g.Of)-=g-0f-.

TA A A T4 TA A Thia T2A
idra Ha idra KA pa
J 2
TA T2A r TA

Figure I: Identity and Associativity laws for a riaonad

The two forms are equivalent; for any a monad (T, 7, u), there is a Kleisli triple (T, n, .*) where T is the
restriction of the functor T to objects, 17 is unchanged, and forall f : A — TB, f* = ug o Tf . Also for all
Kleisli triples (T, 7, -*), there is a monad (7, 7,), where Tf = (o f)", and p =id7,.

3.1. Identity monad

An obvious monad is the identity monad (/,id, id), where / is the identity functor, and the natural transfor-
mations are identity morphisms.

3.2. Lifting

In the category Cont, there is a monad (L, up. down) where

o Forall objects A, LA =AU {14}, where L;4 & A is a new least element,

Lipg x=1;4

¢ For all morphisms (continuous functions) f : A — B, Lf (x) = { f(x) otherwise

o For all objects A, up, : A — LA is the inclusion function

3 124 : _ Lia x= .LLZA
¢ For all objects A, down, : L°A — LA is down,(x) = { N otherwise

Lifting can be used (see [14]) to model partiality in programming languages, with the new bottom elerment
representing divergence.

3.3. Coproducts, Disjoint Sums, and Separated Sums

In any category C with finite coproducts, and a distinguished object £, there is 2 monad (E. 7, y¢) such that

e Forall objects A, EA =A + E.

e Forallf :A —B,Ef :A+E—B+Eisf +idg

¢ Forall objects A, nsy : A — A + Bis ¢, the corresponding coproduct injection morphism.

o Forall objects A, g : (A+ E)+ E — A+ Eis [idgs. ¢2].

This construction also defines a monad when using separated sums in Cont, even though they do not
satisfy the requirements for a coproduct (the [-,—] constructor is not unique for separated sums).

Coproducts are typiczilly (see [14] and [18]) used to model exceptional handling, where E represent a set
of errors or exceptions.

As an example, in Cont, let E be the singleton set {err}. Then the monad (E. 7, u) looks like

e ForalldomainsA, EA = {{1,a) |a e A}U{(2,err)}U{L} with the standard separated sum ordering

o For all continuous functionsf : A — B

(Lf(@) x=(l.a)
Ef(x)=< (2.err) x=(2.err)
L x=1
o For all domains A, 74(a) = (1,a)
o For all domains A, ps : (A + E)+ E — (A + E) is defined as
y x=(l.y)
palxy=<¢ (2.err) x=(2,err)
1 x=1

If we look at separated sums and lifting on predomains (domains that are not necessarily pointed), then
lifting is a specific kind of separated sum, namely LA = A + {}. In particular any property that is true of all
separated sums is also true of all lifted domains, and if a property fails to hold for lifted domains, it also fails
to hold for separated sums.

3.4. Products

Let C be any category with binary products and a termihal object. Then an object X is a monoid inC, if there
exist morphisms ¢ : 1 — Xand m : X X X — X such that

° (mOidx)X e=m,

e mo (e x idy) = 12, and

e mo (m x idy) o ax xx =moidy x m, where a, g ¢ is the natural isomorphism from A x (B x O) to

(A xB)xC.

Given a monoid X, there is then a monad (X, n, u) defined as

5

E EEE———

Xx1—9xxe _y, x.eXid Xx1 Xx (Xxx0 xXm v x
Qx XX
Ly m ™ XxX)yx X m
m x idy L
X XxX X

Figure 2: Identity and Associativity properties of a monoid

For all objects A, XA =A x X.
Forallf :A — B, Xf =f x idy.

For all objects A, 74 : A — A X X is {id4, eola).

For all objects A, 4 : (AX X)X X — Ax Xis (idg x m)o a;'f\,'x, where o~ ! is the natural isomorphism
from(. X)X .to_. X (-X).

Products can be used to mode! a simple form of output processing ([18]) or to calculate resources (such
as time or space) used in a program ([11]).

As an example, let C = Cont and let X = VNat, the set of natural numbers (plus « to make it directed
complete), ordered vertically with least element O and greatest element w. Let e be the constant 0 function,
let m be addition. Then VNat is a monoid, and the monad (X.7, u) looks like

For all domains A, XA = A x VNat

¢ For all functionsf : A — B, Xf (a,n) = (f (a).n).

¢ For all domains A, n4(a) = (a,0)

For all domains A, p4({(a,n;),n2) = (a,n| + ny).

3.5. Power Sets and Power Domains:

In the category Set the power set constructor forms a monad (P, {—},J) where

¢ Forall sets A, PA is the power set of A,
e Forall functionsf : A — Band all X € PA, Pf(X) = {f(x) | x € X}.
o {-}:1 2 P forms singleton sets from elements

e J: P22 Pis set union

Thus we can model nondeterminism ({14]) by having the result of a program be a set of possible final
values.

To do the same in Cont, however, we need to form domains out of power sets, in particular we need a
partial order on the sets. Since we generally want to make use of the ordering in the underlying set, using set
inclusion as the partial order is insufficient. There are three orderings typically used for power set domains
(see [9]):

Hoare or lower ordering: « C° vif Vx € «. 3y € v such that x < .

Smyth or upper ordering: u C® vifVy e v.3x c usuch thatx < y.

Plotkin or convex ordering: u T vifu C° vand u C¥ v.

These orderings tend to form preorders instead of partial orders but, by a construction taken from {9],
we can get back a partial order.

Definition 2 An ideal over a preorder A is a nonempty set 4 C A that is directed and downwards closed.

An ideal u is a principal ideal if u =|a e {b| b < a} for some a € A. Idl(A) is the poset of all ideals in A,
ordered by inclusion.

Theorem 1 [9] For all preorders A, 1dl(A) is an algebraic cpo. with compact elements being the principal
ideals.
Thus for any algebraic cpo A we can form another algebraic cpo, the power domain
P'A = IdI((Py (K(A). CT)).

where T € {5.4,1} refers to any one of the three preorderings on powersets and 75, (X) is the set of finite,
non-empty subsets of X. Thus an element s ¢ P'A is a (directed, downwards closed) collection of finite sets
of compact elements of A.

Although theorem 1 gives us an algebraic cpo, what we are looking for is a Scott domain. If A is Scott
domain, then so are the Smyth and Hoare power domains P!A and P°’A. The Plotkin power domain PEA,
however, may not even be bounded-complete (for example, consider P*(R2ol x Bool), where Bool 1s the
standard flat truth value domain {tt, ££, L}). While the Plotkin power domain of a Scott domain is not
necessarily a Scott domain, the Plotkin power domain of a bifinite domain does remain bifinite (see [9]).

All three power domains can be used to form monads (P!, {-}1. 19! as follows:

o For all domains A, and a € A, Let {-}} : A — P'A be the function
Ja}l = {we Pr(KA)) | Ik € K(A).k <* aand w C! {k}}
e Forall functions f : A — B, let P'f : P'A — P'B be defined as

Plfo= |J If@hhuh...wh{f @b}

{aj....an}Es

where for each domain A, W}, is the binary (associative) function from P'A x P'A to P'A defined by

swhr={we P (KA) | JuesIverwC uuv)

Combining the above definitions gives us

Pf(s) = | J{w € P;(K(B)) | Va € u.3k, € K(B).k, <® f(@)and w C' {k, | a € u}}

u€s

¢ Given a domain A, UL : PY(PtA) — PtA is defined by
t S - —— —_
H A(S)=U{U{“([ueu}|ues}

If we only look at compact elements and if we have an f : A — B that preserves compactness, then the
functions above simplify to

o {kDh = {we ik | wCt {k}} =1 {k}.

o (W} (v =lwuv)

o Ptf(U{ar,...a.}) =l{f (@ap}wh .. wh {f (@)} =1{f @n)....f(an)}.ie. P (lu) =|Pf ().

o W@ =Upegu

3.6. Exponentiation

Let C be a cartesian closed category and let V be any object of C. Then there is a monad {V— . const. diag;
where

e Forall objects A, V=A = [V — A]
o Forallf :A — B,V—f : [V — A] — [V — Blis curry(f o appy 4)
o Forall objects A, consty : A — [V — A]is curry(r))

e For all objects A, diag, : [V — [V — A]] — [V — A] is curry(@ppy 4 © (aPPy jv—4)- T2))
In Cont the monad becomes

e For all domains A, V™A is the domain of all continuous functions from Vto A.

For all continuous functions f : A — B, V™f (Av.a,) = Av.f (a,).

For all domains A, consty(a) = Av.a.

For all domains A, diag,(Av).Av2.a,,,,,) = Av.a,,

GA GA____GA Ges GA GA £ G*A
idga da idGa 04 8Ga
‘ L
GA G*A G’A

Gég

Figure 3: Conditions for a comonad
4. Comonads

A comonad in C is a monad in the opposite category C°P, namely, it is a functor G : C — (, with two natural
transformations ¢ : G — [and & : G = G? such that fur all objects A of C

® €GA 06,4 =G€A 06,4 =idGA

L 6GA°6A=G'5A°6A

A comonad also has a form similarto the Kleisli triple: the Kleisli cotriple (G.¢. .*), where G is a function
on objects, and for each object A, ¢4 is a morphism from GA to A, and for each morphism f : GA — B.f~
1s a morphism from GA to GB, all satisfying the following conditions:

o Forallf :GA — B,egof*=f
e For all objects A, ¢ = idga

e Forallf :GA — Bandg:GB — C.g*of"=(gof*).

4.1. Side effects

LetC be any cartesian closed category and let S be an object in C. Then there is a monad (S. 5. ;t) where

For all objects A, SA =[S — (A x 5)]
For all morphismsf : A — B, Sf : [S — (A x §)] — [§ — (B x] is curry((f x ids) o apPs_4.s)

For all objects A, s : A — [S — (A x §)] is curry(idaxs)

For all objects A, pag : [S — ([S — (A x §)] x §)] — [S — (A x §)] is CUrry(appg a«s © aPPs saxs)

In Cont the monad becomes:

_

¢ For all coniinuous functions f : A — B, Sf (As.(as,) = As.{f (ds). 25)
¢ For all domains A, n4(a) = As.(a.s).

o For all domains A, pa(As.(us. 25)) = As.ug(zs)

This monad can be used to model side effects (see [14]), where S represents some internal state; a
computation takes an initial state and returns a value plus a new state.

4.2. Product Comonad

Let C be a category with binary products and let X be any object of C. Then there is a comonad (X.7.48)
where

¢ Forall objects A, XA=A x X
e Forallf :A — B, Xf =f x idy.
e Forall A, m) : A x X — A is the corresponding product projection morphism.

o Forall objects A, 64 : A x X — (A X X) x X is (idaxx.m2); in Cont, 84(a.x) = ({a.x).x).

42.1. Computation paths: Exponentiation comonad

Let C be a cartesian closed category, and let V be a monoid in C with identity element ¢ : | — V and binary
operator m : V x V — V. Then there is a comonad (V. val. pre) where

o Forall objects A, VA = [V — A]

e Forallf :A — B, Vf : [V— A] — [V — B} is curry(f o appy,.y)

o Forall objects A, valy : [V — A] — Ais @appy, o (idva,eolva)

o Forall objects A, pre,, : [V — A] — [V — [V — A]] is curry(Curmy(appy, y o (ida x m) o ay, ,).
where o' : (LX) X -~ _X(.X.)

To see the above more clearly, in Cont it becomes

o For all objects A, VA is the domain of continuous functions from V to A
o For all continuous functions f : A — B, Vf (Av.a,) = Av.f(a,).
¢ For all objects A, vals(Av.ay) = a,.

o For all objects A, pre,(Av.a,) = Avi.Av2.ame, .v,)-

10

One possible monoid in Cont has V = VNat, ¢ = w, and m the greatest lower bound function. With
this monoid the monad becomes the path comonad mentioned in {7], where VA can be interpreted as a
non-decreasing sequence of elements of A, Vf maps f onto the elements of the sequence, val takes the value
of a sequence at w, which by continuity is also the least upper bound of the elements of the sequence, and
pre returns the sequence of prefixes of a sequence.

4.2.2. Strictly increasing paths

When using the path comonad mentioned above, where V = VNat, etc., elements of VA can be thought of
as sequences of construction steps used to build a data value. Since the sequence is not necessarily strictly
increasing, there may be places in the sequence where the values remain unchanged. To get sequences
where the values always increase, we create a variant of the comonad (V, val, pre) in Cont using strictly
increasing paths. The resulting comonad (Vs, sval, spre) is defined as follows:

e For all domains A, let VsA be the set of finite or infinite strictly increasing sequences in A. The
finite sequences are represented as eventually constant (infinite) sequences. Therefore we have either
sequences of the form (a,);_,, where for each n, a, <4 an.,, or sequences of the form apa; . .. an_ .y
where ay <4 a1 <4 ... <a an. The ordering < y4 is the least partial ordering such that

qap.. .aN_la‘,,”, SVSA Qp...ay-1a

whenever a e VsA and ay <a a¢. If we consider a sequence to be a (stable) function from VNat to A,
then this ordering of sequences is closely related to the stable ordering on functions.

¢ For all continuous functions f : A — A’, let V¢f be the least continuous function such that for all
a,ag.a; € A such that ag <4 a; and forall a € VsA,

Vsf @’y = (f@)*
_ (f (@)X Vsf (@1a)) f(ao) £ f(ay)
Vsf (apaia) = { Vef (ara) Flao) = f (@)

The definition is similar to the definition of V on functions except that any resulting duplications are
removed.

e For all domains A, svals(a) = a, = U 2 a,.

¢ For all domains A, spre,(a) = ((amim,d))j“;o)“:() or equivalently, spre,(a) = (ap...a,_a;") -,

S. Kleisli Categories

Given a category C and a monad (7,7, 1) there is a category A'(7), the Kleisli category of T, detined as
follows:

o The objects in K(T) are the objects in C
e A morphismf : A A B in K(T) isa morphismf : A — TBin(

1

o For all objects A in K(T), the identity morphismon A is s : A — TA.

¢ For all pairs of morphisms f : A L Band g:B L ¢, their composition is g gf =pcoTgof.
Similarly, for a comonad (G, ¢, 6}, there is a Kleisli category K(G), where

o The objects in K(G) are the objects in C
e A morphismf : A £ BinK(G)isa morphism f : GA — Bin(

e For all objects A in K(G), its identity arrow is €4 : GA — A.

o For all pairs of morphisms f : A £ Band g:'B L4 C, their composition is g gf =go Gf oé,4.

[7] and [14] (and section 6.1) show how to cbiain semantic interpretations of languages using Kleisli
categories. In particular the meaning of a functional program becomes a morphism in the Kleisli category,
and the Kleisli category composition rules are used instead of composition in the original category.

6. Double Kleisli Categories

The Kleisli category of a monad is generally used to represent a semantic interpretation of a functional
language with added non-functional features. The Kleisii category of a comonad is generally used to look
at intensional semantic interpretations. In order to combine the two, we would like to form from a monad
{T.n, 1) and a comonad (G, ¢, §) inC a category K(G, T) similar to the Kleisli categories, with objects inC,
and with morphisms of the form f : GA — TB.

In order to guarantee that we actually obtain a category, however, we need some additional conditions,

adapted from [4]):

Definition 3 Given a monad (7, 7, 1) and a comonad (G, €. 8), a distributive law of T over G is a natural
transformation o : GT — TG such that the following four identities hold:

® 04 0Gna =1NGa
[TGAOG'A = €74
® 040Gps=pca0oTos 0072

° 76,4 004 =U(;AOGO’A 061'A

o is distributive with n whenever the first identity holds. Similarly o is distributive with ¢ when the
second identity holds, and so on.

For similar definitions, see {4], which related two monads, or [1), which related two comonads.

12

GA TA

Gna 1NGA €TA Tea
GTA = TGA GTA - TGA
GTTA =T+ 7GTA — %A - TTGA 66TA —S% . GTGA —2%A . TGGA
Gua HGa 074 To,
GTA - TGA GTA = TGA

Figure 4: Distributive laws

Theorem 2 Given a monad (T,n, 1) and a comonad (G, €, 6) in a category C plus a distributive law a of T
over G, there is a category K(G, T) defined as follows:

o The objects of K(G,T) are the objects of C.
o A morphismf : A “TBin K(G.T) is a morphismf : GA — TB inC.
e For each object A, the identity morphism idf‘T onAisnqoeq: GA — TA.

. G.T
e For every pair of morphisms f : A or Band g : B or C. their composition, g o f. is
pco Tgoogo Gf oda.

contains a diagram showing that idg‘T of =fo idf = f. The upper part of the diagram represents the

expansion of idg’r of, pgoTngoTeg o og o Gf o b, and the lower part of the diagram represents the
expansion of f o idf‘r, ptg o ITf 004 0 Gng o Tey 0 b4; in the centeris f .

Proof. The proof involves some straightforward diz;gram chasing, shown in figures 5 and 6. Figure 5

GT GT GT _GT
Figure 6 contains a diagram showingthath o (g o f)=(h o g) o f, The upper path represents the
) GT GT . GT _GT
expansionof A o (g o f)and the lower path represents the expansionof (A o g) o f. O

6.1. Examples

We now check all the possible combinations of comonads and monads from our lists of examples to see
whether the distributivity condition holds. A summary of the results is in table 1 on page 26.

13

GA ! G*A Gf GTB I8 TGB
0a idGa €GA €78 Tep
2 y f Tng ‘
G’A GA TB T°B
Ge A
Gna 7GA n78 idrs LB
GTA ———5——TGA 7 T°B 5 T8

Figure 5: Proof of the properties of identity in (G, T).
6.1.1. The Product comonad

A distributive law ¢ of any monad T over the product comonad X is a natural transformation from 7_ x X to
T(- x X). For certain types of monads such a distributive law is guaranteed to exist:

Definition 4 Let C be any category with finite products. A monad (T, 1, it} is strong if there exists a natural
transformation 7 : 7. x . — T(_ X _), called a tensorial strength, satisfying the following conditions:

[} T7l’| 0Tql =Ty
o 7480 (N4 X idp) = Naxs-
o paxg o TTap o Tras =Tap o (pa X idp).

o Taxp,c o (Tap X idc)o aras,c = Taapc o Tapxc, whereagaina : - x (L X 2) = (L X J) X -

This definition of strength is equivalent to the definition in {14], which uses a natural transformation .
t:_x T- 3 T(_x). Itis clear that given such a t we can get T with 145 = T(m3,m) 0 g 4 0 (m2.7) and
similarly we can get ¢ from 7.

Unsurprisingly, if (T, 7, u) is strong then there is a distributive law ¢ of T over the product comonad X,
with 04 = 74 x. Of course, determining the existence of strength is in general as difficult as determining the
existence of a distributive law directly. For set-like categories, however, there is a simple test for strength:

Theorem 3 Let C be a set-like category, and let (T,n,) be a monad over C such that for each pair of
objects A and B the functiontag = M\ .Tf : [A — B} — [TA — TB) is a morphism in C. Then (T, n,u) is
strong.

14

N Gba

Gf G¥

618 —_. G215 8%, grGe S8 . gric Gue GTC

o} aGs arc oc

TGB 5 TG*B 6a TOTC ~7o; T*GC —5— TGC
T?h Th

Tup HD

Pp—E2 . 1p

Figure 6: Proof of associativity of composition in K(G.T)

15

AxB TA
74 X idpg NAxB m Tr)
TA x B——55— TA X B) TAX1—F7—TAX D
7°A x B TTAB T(TA x B) TTas T2(A x B)
ia X idg Haxs
TA x B 3 T(A x B)

Tag X id
(TAx B) x C—2827C _ 14 x By x € —22BC__ T(A x B) x O)

P

QaTAB.C Taasc

TA x (B >» O) TAx (BxO)

TA,BxC

Figure 7: Requirements for 7 to be a tensorial strength

16

Proof. Given such a category, let 74 g = UNCUITY(t4 ax g o CUrry({m2, 1))y o (m2, 7,) = A(a.b).T(Aa.(a.b))a.
For naturality, given a functionf : A — B and a function g : C — D, we have that

¢,p o (Tf X g)(a,c) = ¢, p{Tf (a), g(c))
= T(Ab.(b.,g(O))Tf (a)
=T(Ab.(b,g(c)) o Aa.f (a))a
=T(Aa.(f (a),g(c)))a
=T((f x g)o la.(a,c))a
=T(f x g)o7as(a,c)

The other conditions can be shown in a similarly straightforward manner. O

All of the monad examples given are strong in Cont [14]. The resulting o turn out to be:

Lifting: 04 : LA x X — L(A x X) is defined by 64(L,x) = L and fora € A, 04(a,x) = (a.x).

Separated Sums: 04 : (A+E) X X — (A x X)+Eis defined by g4(¢1(a).x) = 11({a.x)), ga(t2(e), x) = t2(e),
and o4{L,x) = 1.

Products: 0,4 : (A X X') X X — (A x X) x X' is defined by o4{{a,x'),x) = ({a,x).x'), where X denotes the
object from the product comonad, and X’ denotes the object from the product monad.

The product monad is strong in any category with products, where o4 = (m; X idyx, 72 o m;) is the
natural isomorphism from (A x X’) x Xto (A X X) x X'.

Side effects: 04 : [S — (AXIxX — [§ — (A xX)x 5] isdefined by o4 (As.{as, 2:), x) = As.{{a,,x).25).

More generally, in a cartesian closed category we have o4 = CUTY(34 5 x © (apPsy s X idx) 0 Fsa.x.5),
where 34 p ¢ is the natural isomorphism from (A x B) x Cto (A X C) X B.

Power Sets: (In Set) 54 : PA X X — P(A x X) is defined by o4{u.x) = {(a.x) | x € u}.

Power Domains: o, : P1A x X — P1(A x X) (for t € {.4,1}) is defined by

a;(s,x) = U{w |Va € u.3k, < (a,x)wC! {k,| a e u}}

ues
For compact elements (|u, k), a;(_Lu,k) =|{{(a,k) | a € u}.

Exponentiation: 0, : [V — A] x X — [V — (A x X)] is defined by g4(Av.a,,x) = Av.{(a..x). A simiiar
definition holds for strict paths.

For all cartesian closed categories the exponentiation monad is strong, with

04 = CUMY((app, X idy) © Bvax.v)

6.1.2. Exponentiation as a monad

A comonad (G, ¢, 8) is strong if there exists a natural transformation 7 : G_ x - — G(- x .) that satisfies
analogous conditions to the ones required for a strong monad (see figure 8). For all such comonads, there
exists a distributive law o of the exponentiation monad V™ over G, where 04 = CUrry(Gappy 4 © Tv—a.x).
The proof is analogous to the proof for the product monad.

17

AXB GA

Y

€4 Xy €EAxB T Gﬂ'l

GA x B TAB G(A x B) GA x 1 Tl G(Ax1)
G*A x B TOAB | G(GA x B) —— T4 G4 x B)
84 x idp daxB
GA X B Az G(A x B)
(GA x B) x C—A8 19 _ oo By x c—A5BE__ Gua x 8x0
QGA,B,C Gaagc
GA X (Bx () G(A x (B x C))

TA.BxC
Figure 8: Requirements for a strong comonad

As for strong monads, for set-like categories whenever the function g4 g = Af .Gf is a morphism in that
category, then G is strong. The resulting o will be

CUITY(UNCUITY(Zy—4,4 © CUTTY(@ppPy 4 © (T2, m))) 0 (T2, 7))
i.e. for g € G[X — A], o(g) = Ax.G(\a.a(x))g.

The comonad (V,val,pre) is strong in both Cont and dI, with the resulting o being defined by
o(Av.Ax.a, ;) = Ax.Av.a, . The comonad (Vs,sval, spre), however is not strong in Cont, for the function
Af .Vsf is not monotone when functions are ordered pointwise (and given a tensorial strength 7, we can
derive as a morphism Af.Vsf , with Af.Vsf = curry(Vsapp, g o Vs(m2,m1) 0 Taa—g) © (72, m))). The
product comonad is strong and the o resulting from this construction is identical to the o mentioned in the
previous section.

18

“

6.1.3. Product as a monad

For all comonads (G, ¢, §) there is a distributive law 04 = (Gm(.€x 0 Gma2) (= (G, T2 0 €axx)) of the
product monad X over G. For example there is a distributive law o of X over V, where for standard cartesian
closed categories

- oa = (CUITY(m| © @PPyaxx.v)s T2 © @PPyiaxx,v © (idviaxx s €0lviaxx))

or, in Cont,
oa(Av.{ay, x,)) = (Av.ay, X.)

For the strictly increasing paths comonad ¢ is the same except that duplicates are removed.

6.1.4. Lifting with the path comonads

If we look at the lifting monad (L. up, down) with the path comonad (V, val, pre), using the monoid VNat
(¢ = . and 1 = min) in the category Cont, we see that an element of VLA can have one of three forms:
it can be a path a € VA, the element L“, or of the form L"a for some path a € VA and some n > 0. An
element of LVA is either a patha € VA-or L.

In order for a natural transformation o to be distributive with Up we must have that if a € VA, g,(a) =
oa(Vup,(a)) = upy,(a) = a. There is no value, however, that can be assigned to o4(_La) that satisfies
all distributivity requirements without violating monotonicity or naturality. For example, let us look at
the domain A = VNat and the element L0¥. Since oyng(0“) = 0¥ and L0¥ < 0¥, by monotonicity
of oyNae We must have that oyng(L0%) < 0“ which in LVVNat means that either ayng(LO¥) = 0~ or
oyNat(L0¥) = L.

If we let oyNae(L0¥) = L, then o is not distributive with val, since Lvalyngd(adyNa(L0¥)) =
Lvalynai(L) = L and val;yna(L10%) = 0.

So we must have that 0(L0%) = 0“. Letf : VNat — VNat be the constant 1 function. Therefore by
naturality of o we have that

oyNat(L) = oyNat(VLf (LO¥))
= LVf (0yNge(L0¥))

- =1v

However we already know that oyng(01*) = 01“. Thus we have that L1¥ < 01, but oyNg(L1%) =
1% > oyNat(01¢). So o fails to be monotone.

This proof generalizes to any non-trivial monoid V but not to the strictly increasing path comonad or to
exponentiation in the category dI. In fact the natural transformation given by

L a=1%
oa(@a)=< a' a=1"a'forsomen >0
a otherwise

19

is a distributive law of L er V(V = VNat) in the category dI (¢, is stable for all dl domains A). When we
limit n to 1, o is a distributive law of L over V5.

6.1.5. Coproducts .

There is no distributive law o of the separated sum monad E over the exponentiation comonad V in the
category Cont, for reasons similar to the ones above showing that there is no distributive law of the lifting
monad L over V. Again there is again a distributive law o of E over Vs and a distributive law ¢ of E over V
in dI (for the monoid VNat), namely

L a= 1%
oa@ =< {a)iy) 3In>0.a=L1"((a)),
e(a) otherwise

This particular function depends not only on the structure of the comonad, but also on the structure of
the monoid and thus does not generalize easily.

For categories with coproducts and one extra (somewhat strong) condition we do get distributivity:

Theorem 4 Let C be a category with binary coproducts, (G, ¢, 8) be any comonad over C, and E be some
object. Suppose that for each object A, the object GA + GE is naturally isomorphic to G(A + E), with one
half of the isomorphism being ¢4 = [Giy,, Giog]. Then there is a distributive law o of the coproduct monad
E over G, namely

oa=(idas+¢g)o d);l

Although the above condition does not hold with the comonad V in Cont, it does hold for V in the
category Conts of domains and strict continuous functions (using coalesced sums). For set-like categories,
the above condition will hold primarily when the structure of G(A + E) uniformly consists of either elements
of A or elements of £.

6.1.6. Power Sets and Power Domains with the Path comonads

In the category Set and for all monoids V, there is a distributive law o of the power set monad P over the
exponentiation comonad V, with 4 : [V — PA] — P[V — A] defined by

oaX)={ae VA|Vve Va(v) e X(v)}
The equivalent function in Cont for the Hoare or Smyth power domains, and in Bif for the Plotkin power

domain is
oa(s) = {w e Pg,(K(VA)) | Vv e V.{a(v) | a € w} € s(v)}

For the Hoare or Smyth power domains, however, ¢ is not natural, and for the Plotkin power domain, it
is not even monotone. In fact we can show that for all three power domains any choice of o will fail at least
one of the conditions needed for distributivity.

20

Theorem 5 /n the category Cont, let V be the monoid VNat with unit w and binary operator min. Then
there is no distributive law of the Hoare power domain monad (P’,{-[}°.\s) over the path comonad
(Vv,val,pre).

Proof. Assume that there exists an indexed collection of morphisms & such that for each domain A,
o4 1 VPPA — P’VA and that o is distributive with {—[°, i.e. for all objects A, 04 o V]~ = {~}},. We
will show that there are domains A and B, an s € VP’A, and a continuous function f : A — B such that o is
not natural.

Let A be the flat truth value domain Bool. Let B = 3, the domain of three points, {0, 1, 2}, with
0 <1 <2 Letf : Bool — 3 be the function with f (L) = 0, f(tt) =1, f(££) = 2. Itis clear that f is
monotone on a finite domain and therefore is also continuous. Lets = (J{tt})(|{tt.££})“. Then

ag o VPfs=op(VPf (I{tehl{tE, E£})*))
= op(P’f (I{tehHP°f (L{tt. ££}+)
=op((L{f (O)DU{f (£t).f(EE)})¥) using the definition of P
on compact elements

=og((L{1HU{1.2})*)

=op((L{11({2D)*) {2} =1{1.2}
=aa({ 10542057

=og o V{-[5(12*)

={12°[, by assumption
= ({12}

Now suppose that for some s ¢ P’ VBool we have that P°Vf (s) ={{12“}. Given that all elements of V3
are compact, we have that

{129} = PPVf (s)
= Uue; ‘,{Vf(x) { X € u}
={weP;(V3)|Jueswl {Vf(x)|xeu}}

Thus we know that for every u € s, {Vf (x) | x € u} € PPVf(s), i.e. {Vf(x) | xeu} C° {12*}. This
means that for all b € 4, Vf(b) < 12¥. We also know that since {12*} €] {12¥} = P°Vf (s), there must
be an « such that {12¥} C° {Vf(x) | x € u}, which means that there exists some b € u with 12¥ < Vf (b).
Since we also have that Vf (b) < 12¥, Vf (b) must equal 12+,

However the only sequence b in Bool such that Vf (b) = 12¥ isb = tt ££*, which is not an element of
VBool. Thus there is no value gpge} can give to s to make oz o VP’f (s) equal to PP Vf (0'geei(s)). 50 is not
natural. O

Since the proof used valid Vs paths and did not use specific details of the ordering of the paths, we also

have shown that

Corollary 6 In the category Cont, there is no distributive law of the Hoare monad (P, {-[}* .\&]') over the
strict paths comonad (Vs, sval, spre).

21

Also, by a straightforward extension of the proof given above, we can show that there is no distributive
law for any monoid domain V that contains two points v| and v» with v; <" v,, i.e. any non-trivial monoid
domain.

Theorem 7 In the category Cont, let V be the monoid VNat as in Theorem 5. Then there is no distributive
law of the Smyth power domain (P%, {~},\¢*) over the path comonad (V.val.pre).

Proof. Assume that there exists an indexed collection of functions ¢ such that for each domain A, o, :
VP'A — P!VA. We will show that the o’s cannot simultaneously satisfy monotonicity, naturality, and
distributivity with {—[}*.

Let 2 be the two pointset { L, T} with L < T. Define fo.f : Bool — 2 as follows:

fo(l)=1
foltt)=T
fo(EE)=T
fitby=1
fiee)=1L
fEE)=T

Lets = (| {tt, ££})|{££})” € VP'Bool. If we assume that o is distributive with {— [}, i.e. for all
objects A, 04 0 V{]-[}i = {]—-[}"VA, we get that

a4 0 VP s = ay(VPifo((L{tt, EE}NI{EE})*)
=o((L{T}H*)
a2({ T 1)
={Tv]? by assumption
= {1}

Given any s € P!VBool, we see that

PAVEo() = Uyes Wheu{ VF (013
=Uyes UVF (D | 1€ u} since all elements of V2
are compact

Thus in order for P*Vfy(s) to be equal to | { T} there mustbe au € s with { T*} C* {Vf(x) | x € u},ie.
forallt e u, T 5"2 Vf (t). Since T“ is the maximum element of V2, this is the same as saying that for all
teu VAt)=Tw.

Now the elements of VBool are all of the form 1, L"tt*, and L"f£*, where n is a non-negative
integer. If we apply Vf to all of these we find that

Vfo(1¥)= 1%
Vio(L eew)y=L"TY
Vfo(L"££¥)= L"TY

22

Therefore for all s with P*Vf(s) =|{ T}, either {tt~}, {££~},or {tt~. ££“} mustbeins. Since those
three sets are maximal in the Smyth preorder, s must therefore be either |{tt~}, |{££~}.or |{tt*. f£~}.

If we assume o is natural we have that P!Vfo(0Boeoi(S)) = 02(VPifo(s)), but we know that aa(VPf y(s))
equals [{ T«}. Therefore ogggi(s) must be either [{tt“}, |[{££“}, or |{tt¥.££¥}

Now with f; we see that

03 0 VP \(s) = ap(VP (U {et. EENCI{EE})*Y)

=a((I{L. THU{TH*)

=a((L{LHTH) (L{1t}=1{L.ThH

= LA TIH)

={LT¥ l}‘:,z assuming distributivity
with {-}*

= [{1T¥}

To get naturality with f; we need PV |(0Bool(s)) to equal | { L T} for one of the possible values for
TBool(s). However
PVAI({te = 1{T}
VAI({££“) = |{L¥}.and
PVE (J{Efv. tev) = [{L¥, T¥}

none of which are equalto |{LT*}. O

Corollary 8 In the categorv Cont, there is no distributive law of the Smyth monad (Pt {-}*. o) over the
strict paths comonad (Vs, sval. spre).

Proof. The proof for theorem 7 can be adapted as a proof of this corollary, since the proof used only strict
paths and while the proof did use the path ordering non-triviaily, ail statements using that ordering (namely
that T¥, £t~, and ££“ are maximal in their respective domains), hold for the strict path ordering as weli. O

Even though there is no distributive law o, for the Hoare and Smyth domains there are lax distributive faws
s” and ¢¥, in the sense that for all morphismsf : A — B,s € VP!Aands’ € VPPA, " o VPUf (s) < PEVSf 0 %(s)
and ¢® o VPf (s') > PPVf o ¢°(s') and ¢ satisfies all the other requirements. Here ¢, defined as

c}(s) = {we Pg (VA)|Vve V.{a(v) | a e w} e s(v)} (te{>.:hH

is the generalization of the distributive law for sets and exponentiation mentionied at the beginning of this
section. Unfortunately, the inequality in the naturality of ¢ translates to an inequality in the associativity law
for the double Kleisli construction, so we cannot form a Kleisli category this way.

Theorem 9 In the category Bif, let V be the monoid VNat as in Theorem 5. Then there is no distributive
law of the Plotkin monad (P*. {|-[}*.\4") over the path comonad (V.val.pre).

Proof. Assume that there exists a natural transformation o : VP! 2. P'V and that o is distributive with buth
{-0* and val. We will show that there exists a bifinite domain A and elements s, and s; in VP'A such that
81 < sabut oa(s)) £ 0a(S2).

23

Let A be the bifinite domain consisting of the set { L.ay,a3,by.b2,c,¢2,d).d2} with the ordering <*
as shown in figure 9. Lets) = ([{a;, b })(I{a2.b2})*, and s; = (| {c1.d)})(}{c2.d2})*. Clearly s, < sa.
We will show that a(s1) £ oa(s2).

N e
N S
1

Figure 9: The domain A

Letf : A — VNat be defined as the least continuous function such that:

f@=fb)=i i=lor2
f)=fd)=i+2 i=1lor2

Figure 10 shows the values of f for each value in A.

4 4

N /

3 3

2 2
\1/ \‘/

N,/

Figure 10: Definition of f on A

We then have tha':

oyNat © VPf (s1) = oyNae(VP ((L{a1. b1 (I {a2,52})*))
= oyNat((L{ID({2}D)*)
= aovna({ 114 2()
= {12° HvNat assuming distributivity
with {- [}
= [{12¥}

Suppose there exists an s € P?VA such that P'Vf (s) =|{12¥}. Since the range of Vf consists only of

24

—_—

compact elements, we have that

1129} = PIVf (5)
=Uses {Vf (@) |a € u}

- so for each u € s we must have that {Vf(a) | a € u} C° {12¥},i.e. forall a € u, a < 12“. Since the a;'s
and the b;’s are incomparable with each other in A, this means that there exists a ug C {a,a3. b b3} with
u CY up. This implies that s =|up. By the assumption of naturality for o we have | {12%} = oynato VPifs; =
PAVf o 0481 50 0481 =|ug. If we then use the assumption of distributivity with val we find that

tha|VNat(l“0) = thalVNat 0 048y

= valpryNatSi
= l«{a27 b?.}

The only value of ug that satisfies the above equations is ug = {a1ay.b\b¥} = g4s;.

By a similar argument we can also show that o482 = {c|cy.d\dy}. However, {a\ay.bby} and
{e1¢4,d\d4} are incomparable, so o, is not monotone. O '

This proof generalizes to any monoid with two distinct and related elements; however, unlike the proofs
for P! and P®, it does not apply to the strict path comonad Vi, since s; and s, are incomparable in VsA.
Moreover, the o given at the beginning of the section, is also not a distributive law over Vs since it not
distributive with {—[}*. We do not currently know if such a distributive law exists.

6.1.7. Side Effects

If we have a comonad (G. ¢. 6) that is both strong and satisfies the equation
Ta,8 0 (idGa X €g) 0 (G7), G7a) = idGaxs
then there will be a distributive law ¢ of the side effect monad (S. 5, u) over G, with
o4 = curry((idga x €s) o (Gmy.Gma) 0 GAPPs x5 © Tsa.5)

This condition s rather stringent, essentially requiring that information lost when applying ¢ to GB is “stored™

. in GA so that it can later be recovered by r. Even though this condition holds for the product comonad, for
the exponentiation comonad (and its variant, the strict path . -monad), it is equivalent to requiring that the
monoid V is isomorphic to 1. In fact the above definition for «nich in Cont tums out to be

oa(Av.As.(au(s), 2,(5))) = o Ze(8)).

does not distribute with u for non-trivial monoids. It is highly unlikely that any distributive law exists for S
over any non-trivial exponentiation comonads.

7. Non-distributive double Kleisli categories

An altemnative method to using both the comonad and the monad simultaneously is to lift the comonad into
the Kleisli category of the monad. One way is to let GA = GA and then coerce the morphism part of the

25

id
G(A x B) —22XB _ G(A x B)

(GW],GWQ) TA.B

GA><GBi GA X B

dGA X €g

Figure 11: The condition 74 g o (idga X €g) o (G}, Gm2) = idguxs

Comonads
General Paths in Cont | Strict Paths Other
Monads Products | Exponentiation | (V= VNat) | or Pathsindl comonad
Lifting yes — no yes —
Exceptions yes see sec. 6.1.5 no yes ifG(A+E)= GA+GE
Products yes yes yes yes yes
Side Effects yes see section 6.1.7
Power sets yes yes — — —
P yes — no no —
Pt yes — no no —
P yes — no see sec. 6.1.6 —
Exponentiation yes if strong yes dI only if strong
Other monad | if strong — — — —

Table 1; Distributive laws of various monads over comonads

functor and the natural transformations into the Kleisli category K(T) (see figure 12). In order to get a valid
comonad, however, we need a distributive law o of G over T as before and in fact the resulting Kleisli
category K(G) is identical to the doubly lifted Kleisli category K(G.T). A similar result holds if we try to
lift the monad in to the Kleisli category of the comonad as shown in figure 12 (For similar constructions,
see [4] and [1]).

Since there are several combinations of monad and comonads that do not have distributive laws, we need
to find a way of combining them without one. One possibility is to lift the comonad using G'A = GTA:

Theorem 10 Let (T, 7, ") be a Kleisli triple and (G, ¢, .*) be a Kleisli cotriple on a category C. Then there

GA =GA TA=TA
Gf =0a0Gf : GA — TGA Tf =Tf o4 :GTA — TA
éq =naoey:GA—TA Na =naoes: GA —TA

by = NGip © 64 : GA — TG?A fla =paoep, : GT’PA — TA

Figure 12: Lifting the comonad or monad using a distributive law

26

+
GTA f GTB 618, 1GTB

f €78 Ters
1 e
TB T8 T°B
idrs Iy
B

Figure 13: Proofthat € & f * =f.
exists a Kleisli cotriple (G', ¢, *') on the Kleisli category K(T) defined as follows:

e For all objects A, G'A is the object GTA.
o Forall objects A, €, : GTA — TA is era.

e Forall morphismsf : GTA — TB, f *' . GTA — TGTB is the morphism ngrg o f *.

Proof. The proof involves using straightforward diagram chasing to show that the three conditions specified
in section 4 are satisfied. Figure 13 contains a diagram proving that for all f : GTA — TB, ¢} gf Y=f0O

Given the above, we can construct a lifted comonad (G'. ¢'. §') from the lifted Kleisli cotriple (G.¢'. -*').
It can easily be shown by simplifying the definition given in section 4 that the resulting comonad is defined
as follows:

o For all objects A, G’A is the object GTA
e Forallf :A — TB, G'f : GTA — TGTB is ngrg o G(ug o Tf)

o Forall objects A, €}, : GTA — TA is €5
e For all objects A, 6, : GTA — TGTGTA (= T(G')*A) is ngrcra © Gngra © é7a

We can now construct the Kleisli category X (G') from K(T). Again it is straightforward to show that the
resulting category has the form

e Objects of K(G') are the same as for C.

27

GTA bra | Grra —GN6TA | rGrA TSTSTA, TGTGTA

Gf GTf TGTf
v
ctB—S" __ grp T8 1612 T°GTB
TnGrs
idcra Gug TGug H1GTB
GTB —1C8___ 7GTB — TGTB
idrcTa
8 Tg Tg
‘ nc idy2c
TC T°C T*C
, c B
idrc
TC

Figure 14: Proof that g s G'f g 8% = g o Gf o 6ra. The upper part of the diagram represents
T T
g o (Gf 0 8}) =pcoTgopgrs o Tngra o TGug o TGTf o ngrera © Gngra © 67a.

¢ A morphismf : A % Bisa morphismf : GTA — TBinC.

¢ For all objects A, the identity morphism on A, idfl, is €, = €7a.

e Forallf :A S Bandg: B S C, their compositiong b f is g & G'f & 8, = g o Gf o bra.

Figure 14 contains a diagram proving that g g G'f 4 6% =80 Gf obra.

Using similar definitions, we can also construct a lifted monad (T'A, n, i1,) over the Kleisli category
K(G) and then form the Kleisli category K(7"). It is straightforward to show that they have the following
forms:

e For all objects A, T'A is the object TGA

28

T type
Fptype b T type
- type x:7F e:dom(p)

x:rthkx:T x: 7 F ple) : ran(p)

x:The: T x:thke:Tr
x:th[e): T x:TkFue:

x:the:m xy:mbey:m
x:7ThHlet xj<e in ex: 1

Figure 15: Typing rules for simple programming language

e Forallf : GA — B, Tf : GTGA — TGB is T(Gf o §4) o €rga
o For all objects A, 77}, : GA — TGA is nga
o For all objects A, 4/, : GTGTGA(= G(T')?A) — TGA is pga © Terca © €16TGA

and

Objects in K(T") are objects in C.

A morphismf : A T g is a morphismf : GA — TGB inC.

For all objects A, the identity arrow on A, idf is 7y = 1Ga.

e Forallf : A lBandg:B—T:»Ctheircompositionggf ispugcoTgof

8. Examples with monadic languages

To apply some of these constructions, let us look at the “simple programming language” described in [14],
with the following syntax:

r u= p|Tp
n= x| pe)|[el|ue)] let x< e in e

LY
1}

Here p ranges over a set of atomic types, x over a set of variables, and p over a set of constant function
symbols. Note that expressions contain exactly one free variable.

The typing rules for this language are listed in figure 15, consisting of definitions for the judgements
type (denoting a valid type) and x : 7 - e : 7. For each constant p we assume a given domain type
dom(p) and a range type ran(p).

29

x:The:1

x.:They=p e x:Thter =, e3
x:The=,¢e

x:The =4 &3

x!T}‘eg =51 €2

X .7 F e Zdomip) €2
x:r)—ezs,.;el

x: 7k pler) Znnp) ple)

x:The = e

x:TEel =74 €2
x:7F [e1] =7 [e2] x: 1k pey) =4 plez)

x:The: 7

x:They=, €y xy:mFe=, 6
x:7F u(le]) = €

x:7Thlet xi < e in ez =, let x; <€} in ¢

x:Tkelrm
x: Tk [ue)) =1 e

x: 7+ e:dom(p)
x:7F p(e) Zanp) 1ot xi <= e in plx)

x:ThFe: T

x:thel, xu:mlFe:n
x:thlet xy<e in xy = e

x:thklet xy <€ in e; =, [ei/xilex

x:ThFe 7 xp:mbte:n xx:mmbe3:n
x:rhlet xp<(let x; <€ in e) in e3 =, let x; <= ¢ in (let x; < e; in e3)

Figure 16: Equivalence rules for simple programming language

F T type x:They=pey x:The x:the: 7
x:tk x|, x:they| x:7k le]lre

x.Thke xy:nF .
x:rlp [e/lx|]¢| ¢ where ¢isoneof e, =, €3, €, : 7/, ore; | .

Figure 17: Existence assertion rules for simple programming language

30

The operational behavior of the language is described by an equivalence relation x : 7 + ¢ =, ¢ (see
figure 16) and an existence relationx : 7 F e | + (see figure 17). The existence relation determines whether
or not an expression can be considered to have the form [e].

The denotation semantic functions considered for this language will all interpret types as objects and
typing judgments as morphisms in some category. A semantic function is sound if

1. whenever x: T F e; =, €3, the meaningof x: 7 - ¢y : 7’/ is equal to the meaningof x : 7 es: 7/
g g

2. whenever x : T - e |/, there exists a unique morphism 4 from the meaning of 7 to the meaning of 7’
such that the meaning of x: 7 + e : 7’ equals o A.

8.1. Extensional semantics

For a category C with a monad (7, n,) we define the extensional denotational semantics, taken from [14],
for this language as follows:

o For each base type p, let A, be some object in C.
o If r=Tr',letA, =TA,.
o For each p, let [p] be a morphism from Agom(p) t0 TAran(p)-

e For each judgmentx : 7+ e : 7/, let MJx: 7 F e : 7'] be a morphism from A, to TA,: (ie. a
morphism from A, to A, in the Kleisli category), defined inductively as follows:

MIx:tFkx:7] =1a,
=id£r
MUx: 7 F ple) : ran(p)] = pa,,,, © Tipl o Mlx: 7+ e dom(p)]
=TIp} gJ\A[x 17+ e:dom(p)}
Mlx:rrH[e]:Tr'} =np ,oMix:the: 7]
Mlx: 1t ute): '] =pa_, 0o Mlx:7Fe:Tr']
MIx:17H let x; <€ in e : m]
= pia,, © TMx, .t ex:mloMlx:rFe 7]

=Mlx i1 P—ezzrzlg,-\/l[x: The 7l

Moggi in [14] showed that if the monad satisfies the mono-requirement, namely if 4 is a monomorphism
for every object A, the above semantics is sound. It is easy to see [14] that all the monads given in this paper
satisfy the mono-requirement.

8.2. Intensional semantics

Suppose we have a category C with both a monad (7, 77,) and acomonad (G, €. 8). It is easy to show that if
a monad (T, 7, i) satisfies the mono-requirement then so do the lifted monads (7. 7. /) and (T'. /. pi'). We
can then use the extensional semantics above to define an intensional semantics by starting with the Kleisli
category K(G) instead of C and using a lifted monad instead of the original. Thus we get the following two
intensional semantics:

31

MIx:tkx:7ler = ﬁAg,r
= T]AG.T o eAg,r
=idgy
Mix: 7+ ple): ran(p)lor = yor S Tplor 8 Mix: 7+ e : domplr
= Uran(p) © TIplG,r 0 TpsT oGMix: 1t e:domp)lgro 6AE'T

THp

G.T
= [P]G,T o] M[x: rke: dom(p)]IG‘T
Mix:Tt (el : TG r =f]TAa,rgM[x:r!—e:r’]G‘T

=nperoMix:tre: gy
Mix: T+ ue): lor =;2Ac;r gM[x crke:Tr'lgr
=poroMix:rre:Tr'lgr

Mlx: Tt let x) <€ in e;:mlgr
. G ; G
=1 o TMEx ik ey mllgro Mix:rrenlgr
2
= ,uAgz.r oTMIxi ik ex:migro "AE;T oGMlx:rmke :rlgro éAg.r

G.T
=Mlxi:miker:mnlgr o Mix:the :nlgr

Figure 18: Denotational semantics using the monad (7. 7, i)

1. Using the lifted monad (T, 7, i) (thus assuming the existence of a distributive law) we define

e For each base type p, AG7 = A, and for type r = Tr', AST = TAGT = 4%

e For each constant p, let [pls.7 be a morphism from GAf(;;(m to TAg;:p).

e Foreach type judgementx: 7 ke : 7', let Mx: 7+ e: 7'lgr: GAST — TAST be defined as
shown in figure 18.

2. Using the lifted monad (7", 7, ') we define

o For each base type p, let AT = A, and for 7 = Tr', let AT = T'AT, = TGAT,.

e For each constant p, let [p] be a morphism from GAg:,m(p) to TGAZ;“(I,).

o Foreach type judgementx: 7 He: 7/ let Mx: T+ e: T'p : GAT — TGAZ,', be defined as
show in figure 19.

These two semantics are clearly sound; they are essentially the extensional semantics using different base
categories and monads, and all such semantics are sound whenever the monad satisfies the mono-requirement.

One more semantic function can be derived for this language by taking the original semantics and
directly adding a comonad to get a semantic definition in the other non-distributive Kleisli category, where
a morphism from A to B is a morphism from GTA to 7B in the original category.

o For each base type p, let AS' = A, and for 7 = Tr’, let A" = TAC,.

32

Mix:

Mlx:

Mix:

Mlx:

Milx:

o For each constant p, let [pl¢ be a morphism from GTAdG(;m(p) to TA

o Foreach judgmentx: 7+ e: 7/, let MI[x: T F e : 15 : GTAS — TAY, be defined as shown in

figure 20

Unfortunately, this semantics is not sound (x :

rhx:rlp =1
= Ngar
=id}p

rF ple) : ran(p)ly = #'I‘ﬁ(p) g T'lply gz\/ll[x : 7k e: dom(p)]y
= Haar,, ° Tiplyp o Mfx: 7+ e: dom(p)lp
=[plr 5 Mlx: 7k e: dom(p)ip

T el : Tr'lp =7)'1,AT,IgM[x:ri-e:r']r

= Nerear, ° GMIx:tke:TIpo 6AL’
THue: mlr =#i‘7'/ ZrM[x irhe:Tr'lp
= Hgar, © Tepgar o MIx: 7+ e : Tr'lp
rhklet x;y < e in e : nip
=W STMIx,:mFer:mlp 6 Mix:TFe :mlp
= Hgar, © TMIx ;i Fe:mipoMix:the :mlp

T
=MIxi:nite:nlp o Mix:the i mlp
Figure 19: Denotational semantics using the monad (7", 7', p')

Gl
ran(p)

“semi-soundness’ property:

Theorem 11 For all expressions e, €|, and e; the following two properties hold:

I Ifx:tke = eythen MIx:The im0 G.”AQ’ =Mlx:TFer: 'l 0 Gnye.

2. Ifx: 7 & el then there exists an h : GAS — AY suchthat M[x: Tk e:7'}g o Gilag' = ll4e 0 h.

Proof. By structural induction on e, using as a substitution lemma

Mix:TF(e/xle :T"lg=MIx.T'Fe "} o GMx: T+ e: TG o brag'

wheneverx:rhe:andx: b€ 7. 0O

33

T + x|, is false). This is because we lack control
over the monad part of GTA. If instead we restrict GTA to the range of Gna we can get the following

Mix:tHx:7tlg = €rpe
=id%,
Mix: 7+ ple) : ran(p)lgr = [ple o GMIx: 7 - e : dom(p)g: 0 bpper
Gl
=I[p]GI [o] 6TAQ'
Mlx:rte]: Tr')q =N oMIx:THe: e
Mix:7F pe): 7' =,U,AG:0JM[.XZT}'E‘.TT’]]G:
Mlx:TF let xy < e in e :ng
=MIxi:mbte:nlgoGMlx:the :nlgodney

Gl
=Mlxp ik e:mlg o MIx:the g

Figure 20: Denotational semantics using the comonad (G', ¢, §')

8.3. Relating intensional and extensional semantics

For all comonads (G, ¢, §) there is an (adjoint) pair of functors F : ¢ — K(G) and U : K(G
the Kleisli category K (G) to the underlying category, where

¢ Forall dbjects A, FA=A

o Forallf :A — B, Ff =c40Gf =f o¢4
o For all objects A, UA = GA

e Foralla: GA — B, Ua = Gao d,4.

(see [2] and [6]). There is also a similar pair of functors, of course, for monads.

For some comonads there is a much closer relation:

Definition S A computational comonad (G, ¢, 8,+)[6] is a comonad (G, ¢, é) plus a natural transformation
~ : I = G such that

® €4 074 =idy

® 84 074 = G4 0 74 (= 84 0 7Ga by naturality)

Whenever (G, ¢, §,v) is a computational comonad, then there is another functor, H : K(G) — C defined
by

e HA=A

e Fora: GA — A,Ha=ao v,.

34

YA

A GA
GA
YA €A YA 04
A idy A |
GA G*A

YGA

Figure 21: Properties of v for a computational comonad

From this we can define a family of relations ~4p5: ifa: GA — Bandf : A — Bthena ~s5 f
whenever f = Ha = a o 74 (the subscripts will be dropped when A and B are understood). We can also
define two functions alg and fun as the morphism parts of the functors F and H respectively. When we use
comonads to represent intensional semantic behavior, fun takes an extensional function and give a default
intensional algorithm, and alg takes an algorithm and returns its extensional behavior (for further details see

(7).

All of the comonads given in the paper, if we assume one very general extra condition, are computational,
with ¥ defined as follows:

Product comonad (X, 7),6): Assume that there exists at least one morphism from 1 to X. Then for ail
objects A, and for all morphisms x : 1 — X, 45 = (ida,x0!4). For Cont, given x € X and for all
objects A, 74 = Aa.(a.x).

Exponentiation comonad (V. val,pre): For all objects A, let 74 = curry(m,). For Cont, v4(a) = Av.a.

Strict path comonad (Vs, sval, spre): For all objects A, 74 = Aa.a”, essentially the same definition as the
one for exponentiation.

8.4. Relating K(G,T) to K(T)

Theorem 12 Let (G, ¢, 8,7) be a computational comonad on C, (T, 7, 1) be a monad on a category C, and
o be a distributive law of T over G. If for every object A, 04 © Y14 = Ty, (figure 22) then the lifted comonad
(G, €,6,7) is also computational,where for each object A, Y4 = 1G4 © 7a.

Proof. By straightforward diagram chasing. Figure 23 contains the diagram proving naturality of 5. The
upper path represents the expansion of 4 $ f . the lower path represents the expansion of Gf g Ya4. O

From the results of the previous theorem we can construct a lifted pair of functors (F.H), and a family
of relations ~4 g relating the Kleisli category K(7) to the doubly-lifted category K'(G, T), as follows:

¢ For all objects A, FA=HA=A

o Forallf :A — TB, Ff =f gc“A =f o€y

35

TA

V1A Tya

GTA TGA

OA

Figure 22: Condition needed to lift computational comonad

GA f TB
YGA 118 Tvg
' x Tn
2 GB
G*A & GTB 5 TGB T°GB
NG2A nGrs nrGs Hce
2
TG*A T TGTB Tom T°GB T TGB

Figure 23: Proof that 45 6 f = Gf & 4

36

e Foralla: GA — TB,Ha=a $ 44 =aoa.

e Foralla: GA — TBandf : A — TB, a~f wheneverf = Ha=ao 4.

There are also functions alg and fun as before, with alg(f) = f o ¢4, and fun(a) = a o 74. Note that all
of these relations are the same as for the standard computational comonad, but for different categories.

All the comonad/monad combinations from table 1 that have distributive laws also satisfy the condition
of figure 22 except for the power set monad over the exponentiation comonad. It can easily be seen why it
fails. If we let V= {1,2} (e =2 and m = max) and A = {a, b}, then

oa o vra{a,b}) = oa([l — {a,b}.2 — {a.b}))
={(1~ a2+~ a),[l —a,2~ b],[1 — b2~ b}

but Pya({a,b}) = {71a(@), 7ad)} = {[1 — a,2 — a],[1 — b,2 — b]}.

Note, however that the lax distributive laws ¢ for the Hoare and Smyth power domains do satisfy the
requirement of figure 22. Essentially the closure properties of the two power domains fill in the elements
missing when using the plain power set.

8.5. Relating X(7) and K(G')

If we look at the lifted comonad G’, which did not require a distributive law, the obvious candidate for
v : A — TGTA is v}, = 1g7a © Y14 © Na. This 7', however, is not natural. Nevertheless we can relate both
K(T) and K(G") to C (actually, the subcategory of C generated by the range of T). To do this we define a pair
of functors (Ur. Hg), with Ur : K(T) — C and Hr : K(G') — C, defined by

o For all objects A, UtA = HgA =TA

e Forallf :A —TB, Ugf =pgoTf

e Foralla: GTA — TB, Hra = a o y7a.

Note that Ur is the monad equivalent of the functor U mentioned at the beginning of this section, and

Hry is the functor H restricted to objects in the range of T. Thus if we let Fr to be the functor F restricted to
objects in the range of 7, we then have that HrFr = I and thus HrFrUr = Ur.

From these functors we can define a family of relations "‘,(1;,3 as follows: given a morphismf : A — TB
in the Kleisli category and a morphism a : GTA — TB in the lifted Kleisli category, a ~f‘ g f if and only if
Hm = UTf, ie. ifao YTA = KB © Tf

Forf :A — TBanda: GTA — TB, the relation ~§ ; has the following properties:

o FrUsf = pgo Tf o era ~C f. Thus we can define a function algG(f) =g o Tf o€ry givingus a
default intensional morphism for each extensional one.

e It is possible that there is no morphism f such that a ~¢ f. For example in the category Set, let
E = {err|,em,;}, let B and X be sets, and let x € X. Then using the computational product comonad

37

EEEEEEEEE————

(X,7,6,7*), where for b € B, y5(b) = (b.x), and the coproduct monad (E.(.p), we define the
functiona : (B+E)x X — B+Etobe

R RG] b=1,(b)
a((b.x))—{ 12(ermp) b =12(e) .

Thenforallf : B — TB, ugoEf (t2(erry)) = (idp, t2)o(f +idg)(ca(err))) = caferr), buta(y (12 (erry))) =
Lz(en'z), soa 7LGf
We can find similar examples for most other non-trivial monads. In fact if for every a there exists an

f such that a ~G [, then 14 = Tna (to see this let a = ny4 o €74) implying that T?A is isomorphic to
TA.

o Ifa~% f,thenf = aov7a o 4. Thus we can define a function fun(a) = ao 74 0 7a. giving us the
extensional part of a. Although this function is defined for all a, from the item above we know that it
may not be true that a ~C fun®(a).

. funG(algG(f)) =f (although it may not be true that alg®(fun®(a)) = a).

e Forallf': B —TCanda : GTB — TC,ifa~G f anda’ ~C f', thena' & a ~C ' § f. This
means that alge(f’ &) = algi(f’) § alg®(), and when a ~C fun®(a) and a' ~C fun®(a’), then
fun®(a’] a) = fun®(a") z fun®(a) (and also o’ S a~GC fun®(d’ g a)).

8.6. Relating K(7) and K(7)

These two categories are not related via a Kleisli construction (actually K(T") is (isomorphic to) a full
subcategory of K(T)); there is thus no point in looking for a version of 4. We can, however, form a family
of relations as we did in the previous section. For any pair of morphisms f : A — TBand a : GA — TGB,
leta ~£’B f if and only if a0 4 = Tyg o f. Note that, unlike the last section, the constructions T~ g o f and
a o4 are not parts of functors, since the resulting morphisms are of the form A — TGA and do not compose
properly to form a category.

The family of relations ~7 has similar properties to ~C: forallf : A — TBand a : GA — TGB

e Tygof o€s ~T f, s0again we can define a function alg”(f) = Tvg o f o €, on morphisms in A'(T).

o Again there are morphisms a such that there is no f witha ~7 f. Forexample, in Set, let (X.7,.0.v')
be the product comonad from from the set {1,2} with y4 =)a.(a. 1) for any set A, and let B be any
set. Let the monad t= the power set monad P. Let a = A(b.n).{(b.2)}. Then for all morphisms
f : B — PB, Pyhof(b) = {(b'.1) | b € f(b)}, but aoyp(b) = a({b.1)) = {(b.2)}. In order to
guarantee that there is always an f suchthata ~G f, we must have that v4 o €4 = idga, which implies
that GA is isomorphic to A,

o Ifa ~Tf then f = Teg o a o 74. Thus again we can define a function funT(a) =Tegoao =, and
again fun’(alg’(f)) = f .

e Forallf': B — TCandd' : GB — TGC, ifa ~" f andd’ ~T f'. thend 6 a ~T f' & f
(when the composition is well defined). Thus we know that alg’(f’ Z fy=alg’" s alg’(f) and

fun?(a’ : a) = fun’(a’) 4 fun’(a) whenever @’ and a have the property that @' ~7 fun’(a’) and
a ~T fun’(a).

38

—

8.7. Relating the intensional and extensional semantics

Theorem 13 For all computational comonads {(G.¢, é.7) and all monads (T. . 1) that satisfv the mono-
requirement, whenever [plic r ~ [pl for all constants p, it follows that

AST = A, and
Mlx:trhe:Tlgr ~ Mlx:TFe: 7] ie.

Mlx:Tkhe: 7] Mlx:trke: T lgro%a,

i

Proof. That AG'T = A is obvious, since they have the same definition. The rest is shown by straightforward
induction over the structure of e. O

For the M [} function, we cannot simply state that M[x: 7+ e: rJp ~7 Mlx: 7+ e: '] since
the types do not match (AT # A.). All we need to do, however, is add enough +’s after the evaluation of
Mlx: 7+ e: r'] to match up the types and then we do get an equivalence. This is made precise below:

Definition 6 For all types 7, let I'[T] : A, — AT be defined inductively by I'[p] = ida, and ({77} =
T'yAf > Tt}

Theorem 14 For all computational comonads (G.€,6.v) and any monad (T.). 1) that satisfies the mono-
requirement, F[Tr'JoMIx:rFe: PI=Mlx: ke T'lpo Yar © [~] whenever for all constants p,
T'ITran(p)} o [p) = Iplip © Tay © I'f[dom(p)].

mip

Proof. By straightforward inductionon e. O

For the third semantics, M], the relationship M[x: 7+ e : r’f; ~% Mfx: 7 F e : 7'} does not
hold when e = [¢'], except where nyy = Tnja. Since pa o 174 = jta © Ty, with centain restrictions we can
relate the two semantics:

Definition 7 Foralln > 0, let 47, : T"*'A — TA be defined inductively as follows: 4%} = idry and forn > 0,

P = o pmeig.

Definition 8 A morphismf : 7™*!'A — T"*!Bissimpleifthereexistsanf' : A — TB, called a simplification
of f,suchthat uf of =pugo Tf o uf.

Note that for a : GTA — TB, if there exists an f such that f ~C a, then a o vy, is simple and f is
a simplification, i.e. an, algorithm that has been built from a morphism f : A — TB in a natural way
will be simple. Also note that for all morphisms f : A — 7B, n > Oand m > 0, f is a simplification of

pao T'f o py.

An example (in Set) of a morphism that is not simple is the set complement function f : PA — PA,
fX =A - X. To see this, suppose that there existed a simplificationf’: A — PAof f. Thenf ={J, o Pf',
i.e. for any set X C A,

fX=U{f'(x)|xeX}={aeAIadX}.

39

This implies that for all X C A, and all x € X, f'(x) ¢ X. By setting X = A we can easily see that no such f'
can exist.

Theorem 15 Let (G.¢,8,7) be a computational comonad and (T, n, u) be a monad over a category C that
satisfics the mono-requirement. Suppose that for every constant p, both py ., o Tipl and [plc' © Y1aum
are simple, with equal simplifications. Then forallx: T+ e: 7/,

I&:" oTMIx:the:Tl=p} oMlx:The: g o Trmag

where T = T"p and 7' = T™p’ for base types p and p’

Proof. It can be shown by straightforward structural induction that forall x: T"p - e : T/, upm Ay© Mlx:
T'ptke:Tp'Yand Mlx: TP & e : T"p'lg' © Ypme ,» are both simple and that Mx: p 2 : p'lisa
simplification for both, where € is formed from e by removing all ’s and []’s and converting any constants
p to new constants p, whose meaning is a simplification of HAaniy © TlIp} and [plg © v7a domipy (by assumption
they have equal simplifications). The theorem then follows directly. O

From the proof it is not difficult to see that the two semantics were related by effectively removing all
explicit references in the language to the « and the [] construct. For more monads, however, there is no
need to use the (] construct to get a meaningful language. For example typical language constructs that
use the power set and power domain monads, such as parallel composition and nondeterministic choice,
require only simple morphisms to be meaningful, even when adding intensional behavior. Thus we still have
a useful relationship between the intensional and extensional semantics as we had for the other semantic
interpretations, stated in theorems 13 and 14.

9, Conclusions and Future Work

The combination of a comonad and a monad using a distributive law provides an elegant method for obtaining
an intensional semantics from a monadic extensional semantics. It relates as well to the extensional monadic
semantics as the standaid intensional semantics does to the plain extensional semantics. Unfortunately.
there are monads and comonads currently of interest in computer science that do not have distributive laws.
Thus we discussed alternative ways to combine comonads and monads without a distributive law and have
explored the more complex relationship between extensional and intensional interpretations obtained this
way.

There are still other monads and comonads of interest to computer science that were not explored in this
paper, such as the monad representing con* wations. It may be that later on some combinations will be
found that will be interesting enough to explore further. It should also be interesting to explore the uses and
limitations of the lax distributive law of the Hoare and Smyth power domain monads over the exponentiation
comonads. Also the language given in this paper was extremely simple and not particularily useful in itseif;
it mostly exists so w: _.n study monads without worrying about products; most of the Kleisli categones
built over monads .'0 +~ -ave products. There are many other more complex languages that use monads
and are worth stud*ine.

References

(1] M. Barr. Composite cotriples and derived functors. In Seminar on Triples and Categorial Homology

40

Theory, Lecture notes in Mathematics. Springer-Verlag, 1969.
[2] M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.
[3] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall International, 1990.

[4] J. Beck. Distributive laws. In Seminar on Triples and Categorial Homology Theory, Lecture notes in
Mathematics. Springer-Verlag, 1969.

[5] G. Berry and P. L. Curien. Sequential algorithins on concrete data structures. Theoretical Computer
Science, 20:265-321, 1982.

{6} S. Brookes and S. Geva. A cartesian closed category of parallel algorithms between Scott domains.
Technical Report CMU-CS-91-159, Carnegie Mellon University, School of Computer Science, 1991.
Submitted for publication.

{71 S. Brookes and S. Geva. Computational comonads and intensional semantics. In M. P. Fourman, P. T.
Johnstone, and A. M. Pitts, editors, Categories in Computer Science, London Mathematical Society .
Lecture Notes, pages 1-44. Cambridge University Press, 1992,

{8] S.Brookesand S. Geva. Towards a theory of parallel algorithms on concrete data structures. Theoretical
Computer Science, 101:177-221, July 1992.

[9]1 C. Gunter and D. Scott. Semantic domains. In Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics. MIT Press/Elsevier, 1990.

[10) C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations of
computing. MIT Press, 1992,

[11] Douglas J. G''m. Semantic Frameworks for Complexity. PhD thesis, University of Edinburgh, January
1991.

[12] R Heckmann. Power domain constructions. Science of Computer Programming, 17:77-117, December
1991.

[13] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
[14] E. Moggi. Notions of computation and monads. /nformation and Computation, 1991.
(15] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

[16] G. D. Plotkin. A powerdomain construction. In Society for Industrial and Applied Mathematics
Journal on Computing, volume 5, pages 452-587. Society for Industrial and Applied Mathematics,
September 1976.

[17] M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23-36, February
1978.

[18] P. Wadler, The essence of functional programming. In Conference Record of the 19th ACM Svmposium
on Principles of Programming Languages, pages 1-13. Association for Computing Machinery, 1992.

4]

